1997年甘肃省中考数学试卷一、选择题(下列每小题所给的四个答案中,只有一个是正确的,将正确的答案的代号填入括号内.共16个小题,每题2分,共32分))1.已知ሺ݇െ݇香䁕是关于的一元二次方程,那么的取值应该是()A.香B.㌳C.䁕D.2.方程݇䁕的解是()A.䁕B.䁕C.䁕,䁕݇D.䁕,䁕3.已知㌳晦㌳,那么cosሺ݇晦െ等于()A.cos晦B.sinሺ晦െC.sin晦D.sinሺ݇晦െ4.下列命题中,成立的一个是()A.圆是点的轨迹B.有圆心、有半径的图形C.圆是定长的点的轨迹D.圆是到定点的距离等于定长的点的集合5.已知一元二次方程ܾ䁕ሺെ的判别式ܾ݇䁕,那么这个方程()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.只有一个实数根6.在直角坐标系中,点ሺ݇െ关于原点的对称点的坐标是()A.ሺെB.ሺ݇െC.ሺ݇݇െD.ሺ݇െ7.已知、的半径分别是′香、,圆心距是,那么两圆的位置关系是()A.相离B.相交C.内切D.外切8.当锐角晦香香时,sin晦的值()A.小于B.大于C.小于D.大于9.直线䁕݇通过()A.二、三、四象限B.一、二、三象限C.一、三、四象限D.一、二、四象限10.把二次三项式݇分解因式,结果是()A.ሺെሺെB.ሺ݇െሺ݇െC.ሺെD.ሺ݇െ11.抛物线䁕݇的对称轴、顶点坐标是()试卷第1页,总10页
A.轴、ሺ݇െB.轴、ሺെC.轴、ሺെD.轴、ሺെ12.如图,晦是的直径,䁕,图中等于半径的线段共有()A.二条B.三条C.四条D.以上结论都不正确13.如图,tan晦等于()A.B.C.D.14.如图,在中,弦晦,相交于点.已知䁕,晦䁕香,那么晦的度数是()A.B.香C.香香D.香15.扇形的半径是香,所含的圆心角是,扇形的面积是()香香A.B.C.D.香16.函数䁕、䁕ܾሺ香െ在同一直角坐标系内的图象大致是()A.B.C.D.试卷第2页,总10页
二、填空题(共10个小题,每小题3分,共30分))17.sincos䁕________(是锐角).18.函数䁕香中,自变量的取值范围是________.19.如果正六边形的边长为,那么它的外接圆的半径䁕________.20.弦的________经过圆心,并且平分弦所对的两条弧.21.如图,以点为圆心的两个同心圆,大圆的弦晦交小圆于、,如果晦䁕果,䁕果,那么晦䁕________果.݇22.用换元法解分式方程ሺെሺെ䁕,应该设䁕________.݇23.数组,香,,,香,的中位数是________.24.如图,是以的半径晦为直径的圆,且与的弦晦相交于点,如果晦䁕,那么晦䁕________.25.拖拉机开始工作时,油箱中有油升.如果每小时耗油升,油箱中的余油量(升)与工作时间(时)之间的函数关系式是________.26.一个容积为升的容器内装满纯酒精,倒出升后,用水注满,再倒出升混合溶液后,用水再注满,此时容器内的酒精溶液的浓度为________.三、画图题(不写作法,只保留画图痕迹,共2个小题,第27题2分,第28题3分,共5分))27.如图,作出晦果的圆心.28.如图,在直角坐标系中,画出函数䁕的图象.试卷第3页,总10页
四、解答、证明(都要写出详细的解题过程,共6个小题,29-32题每题5分,33、34两题每题6分,共32分))tansin29.计算:sin香݇cos.tan香cot30.求数组݇,݇,,,香,的方差.(精确到′)31.求直线䁕与抛物线䁕݇的交点坐标.32.如图是一水坝的横断面,坝顶宽䁕果,坝高䁕果,迎水坡的坡度是䁕㌳,背水坡的坡度是䁕㌳,求①角晦的度数;②坝底的宽晦.33.如图所示,晦是的直径,为上一点,晦和过点的切线互相垂直,垂足为,求证:晦平分晦.34.如图,已知晦、、分别是晦三边的高,是垂心,晦的延长线交晦的外接圆于点.求证:䁕.五、综合题(共3个小题,第35、36题每题6分,第37题9分,共21分))35.直线过点ሺ݇െ,它与轴的正半轴相交于点,与轴的负半轴相交于点.如果、到原点的距离之和等于.求直线的解析式.36.如图,是晦外接圆上的一点,且䁕䁕果,连接晦交于,如果晦䁕果,求晦的长.37.已知抛物线䁕ܾሺെ经过晦ሺ݇݇െ、ሺെ两点,且与轴相交于、两点,当以线段为直径的圆的面积最小时,求、两点的坐标和四试卷第4页,总10页
边形晦的面积.试卷第5页,总10页
参考答案与试题解析1997年甘肃省中考数学试卷一、选择题(下列每小题所给的四个答案中,只有一个是正确的,将正确的答案的代号填入括号内.共16个小题,每题2分,共32分)1.D2.D3.C4.D5.B6.B7.B8.B9.D10.B11.D12.C13.C14.C15.D16.B二、填空题(共10个小题,每小题3分,共30分)17.香18.݇19.20.垂直平分线21.݇22.或݇23.香24.香25.䁕݇26.ሺ݇െ三、画图题(不写作法,只保留画图痕迹,共2个小题,第27题2分,第28题3分,共5分)27.解:如图所示:试卷第6页,总10页
,点即为圆心.28.解:如图所示:四、解答、证明(都要写出详细的解题过程,共6个小题,29-32题每题5分,33、34两题每题6分,共32分)29.解:原式䁕݇䁕݇香䁕.30.解:∵平均数䁕ሺ݇݇香െ䁕,䁕ሺ݇݇െሺ݇݇െሺ݇െሺ݇െሺ香݇െ∴数据的方差ሺ݇െ′.䁕31.解:由题意得:䁕݇݇香䁕解得:䁕,䁕䁕,䁕∴交点坐标是:ሺെሺെ.32.解:①∵䁕㌳,∴tan晦䁕,∴晦䁕香,②∵晦䁕香,∴晦䁕䁕果,作晦,为垂足,试卷第7页,总10页
则䁕䁕果,∵䁕㌳,∴䁕䁕䁕果,则坝底的宽为晦䁕晦䁕䁕香ሺ果െ.33.证明:如右图所示,连接,∵是的切线,∴;又晦,∴晦,∴䁕,∵䁕晦,∴䁕,∴䁕,即晦平分晦.34.证明:连接,如图,∵晦、、分别是晦三边的高,是垂心,∴䁕,晦䁕,∴䁕晦,∴䁕,∵䁕,∴䁕,而,∴平分,即䁕.五、综合题(共3个小题,第35、36题每题6分,第37题9分,共21分)35.解:设直线的解析式为䁕ܾሺ香ܾ㌳െ,试卷第8页,总10页
由点ሺ݇െ在直线上,得ܾ䁕݇ሺെ,线段的长为:ܾ䁕,ܾ线段的长为݇䁕,∵、到原点的距离之和等于,∴ሺെ䁕,解得:䁕,䁕,∴ܾ䁕݇,ܾ䁕݇,直线的解析式为:䁕݇或䁕݇.36.解:设晦䁕,则䁕݇.∵䁕,∴䁕,∵晦䁕,∴晦䁕.在晦与中,晦䁕,晦䁕∴晦,∴晦㌳䁕㌳,∴㌳䁕:ሺ݇െ,整理得:݇݇䁕,∴䁕,䁕݇(不合题意舍去),∴晦䁕果.37.解:由抛物线经过晦ሺ݇݇െ、ሺെ两点可得ܾ䁕݇,䁕݇ሺെܾ݇香∴䁕݇䁕䁕䁕ሺെ香䁕ሺെ.当䁕݇时,䁕最小此时,ܾ䁕,䁕香,∴函数的解析式为:䁕݇香.试卷第9页,总10页
∴ሺ݇െ,ሺെ,此时,四边形晦的面积䁕•ሺ晦െ䁕ሺെ䁕香.试卷第10页,总10页
1997年甘肃省中考数学试卷一、选择题(下列每小题所给的四个答案中,只有一个是正确的,将正确的答案的代号填入括号内.共16个小题,每题2分,共32分))1.已知ሺ݇െ݇香䁕是关于的一元二次方程,那么的取值应该是()A.香B.㌳C.䁕D.2.方程݇䁕的解是()A.䁕B.䁕C.䁕,䁕݇D.䁕,䁕3.已知㌳晦㌳,那么cosሺ݇晦െ等于()A.cos晦B.sinሺ晦െC.sin晦D.sinሺ݇晦െ4.下列命题中,成立的一个是()A.圆是点的轨迹B.有圆心、有半径的图形C.圆是定长的点的轨迹D.圆是到定点的距离等于定长的点的集合5.已知一元二次方程ܾ䁕ሺെ的判别式ܾ݇䁕,那么这个方程()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.只有一个实数根6.在直角坐标系中,点ሺ݇െ关于原点的对称点的坐标是()A.ሺെB.ሺ݇െC.ሺ݇݇െD.ሺ݇െ7.已知、的半径分别是′香、,圆心距是,那么两圆的位置关系是()A.相离B.相交C.内切D.外切8.当锐角晦香香时,sin晦的值()A.小于B.大于C.小于D.大于9.直线䁕݇通过()A.二、三、四象限B.一、二、三象限C.一、三、四象限D.一、二、四象限10.把二次三项式݇分解因式,结果是()A.ሺെሺെB.ሺ݇െሺ݇െC.ሺെD.ሺ݇െ11.抛物线䁕݇的对称轴、顶点坐标是()试卷第1页,总10页
A.轴、ሺ݇െB.轴、ሺെC.轴、ሺെD.轴、ሺെ12.如图,晦是的直径,䁕,图中等于半径的线段共有()A.二条B.三条C.四条D.以上结论都不正确13.如图,tan晦等于()A.B.C.D.14.如图,在中,弦晦,相交于点.已知䁕,晦䁕香,那么晦的度数是()A.B.香C.香香D.香15.扇形的半径是香,所含的圆心角是,扇形的面积是()香香A.B.C.D.香16.函数䁕、䁕ܾሺ香െ在同一直角坐标系内的图象大致是()A.B.C.D.试卷第2页,总10页
二、填空题(共10个小题,每小题3分,共30分))17.sincos䁕________(是锐角).18.函数䁕香中,自变量的取值范围是________.19.如果正六边形的边长为,那么它的外接圆的半径䁕________.20.弦的________经过圆心,并且平分弦所对的两条弧.21.如图,以点为圆心的两个同心圆,大圆的弦晦交小圆于、,如果晦䁕果,䁕果,那么晦䁕________果.݇22.用换元法解分式方程ሺെሺെ䁕,应该设䁕________.݇23.数组,香,,,香,的中位数是________.24.如图,是以的半径晦为直径的圆,且与的弦晦相交于点,如果晦䁕,那么晦䁕________.25.拖拉机开始工作时,油箱中有油升.如果每小时耗油升,油箱中的余油量(升)与工作时间(时)之间的函数关系式是________.26.一个容积为升的容器内装满纯酒精,倒出升后,用水注满,再倒出升混合溶液后,用水再注满,此时容器内的酒精溶液的浓度为________.三、画图题(不写作法,只保留画图痕迹,共2个小题,第27题2分,第28题3分,共5分))27.如图,作出晦果的圆心.28.如图,在直角坐标系中,画出函数䁕的图象.试卷第3页,总10页
四、解答、证明(都要写出详细的解题过程,共6个小题,29-32题每题5分,33、34两题每题6分,共32分))tansin29.计算:sin香݇cos.tan香cot30.求数组݇,݇,,,香,的方差.(精确到′)31.求直线䁕与抛物线䁕݇的交点坐标.32.如图是一水坝的横断面,坝顶宽䁕果,坝高䁕果,迎水坡的坡度是䁕㌳,背水坡的坡度是䁕㌳,求①角晦的度数;②坝底的宽晦.33.如图所示,晦是的直径,为上一点,晦和过点的切线互相垂直,垂足为,求证:晦平分晦.34.如图,已知晦、、分别是晦三边的高,是垂心,晦的延长线交晦的外接圆于点.求证:䁕.五、综合题(共3个小题,第35、36题每题6分,第37题9分,共21分))35.直线过点ሺ݇െ,它与轴的正半轴相交于点,与轴的负半轴相交于点.如果、到原点的距离之和等于.求直线的解析式.36.如图,是晦外接圆上的一点,且䁕䁕果,连接晦交于,如果晦䁕果,求晦的长.37.已知抛物线䁕ܾሺെ经过晦ሺ݇݇െ、ሺെ两点,且与轴相交于、两点,当以线段为直径的圆的面积最小时,求、两点的坐标和四试卷第4页,总10页
边形晦的面积.试卷第5页,总10页
参考答案与试题解析1997年甘肃省中考数学试卷一、选择题(下列每小题所给的四个答案中,只有一个是正确的,将正确的答案的代号填入括号内.共16个小题,每题2分,共32分)1.D2.D3.C4.D5.B6.B7.B8.B9.D10.B11.D12.C13.C14.C15.D16.B二、填空题(共10个小题,每小题3分,共30分)17.香18.݇19.20.垂直平分线21.݇22.或݇23.香24.香25.䁕݇26.ሺ݇െ三、画图题(不写作法,只保留画图痕迹,共2个小题,第27题2分,第28题3分,共5分)27.解:如图所示:试卷第6页,总10页
,点即为圆心.28.解:如图所示:四、解答、证明(都要写出详细的解题过程,共6个小题,29-32题每题5分,33、34两题每题6分,共32分)29.解:原式䁕݇䁕݇香䁕.30.解:∵平均数䁕ሺ݇݇香െ䁕,䁕ሺ݇݇െሺ݇݇െሺ݇െሺ݇െሺ香݇െ∴数据的方差ሺ݇െ′.䁕31.解:由题意得:䁕݇݇香䁕解得:䁕,䁕䁕,䁕∴交点坐标是:ሺെሺെ.32.解:①∵䁕㌳,∴tan晦䁕,∴晦䁕香,②∵晦䁕香,∴晦䁕䁕果,作晦,为垂足,试卷第7页,总10页
则䁕䁕果,∵䁕㌳,∴䁕䁕䁕果,则坝底的宽为晦䁕晦䁕䁕香ሺ果െ.33.证明:如右图所示,连接,∵是的切线,∴;又晦,∴晦,∴䁕,∵䁕晦,∴䁕,∴䁕,即晦平分晦.34.证明:连接,如图,∵晦、、分别是晦三边的高,是垂心,∴䁕,晦䁕,∴䁕晦,∴䁕,∵䁕,∴䁕,而,∴平分,即䁕.五、综合题(共3个小题,第35、36题每题6分,第37题9分,共21分)35.解:设直线的解析式为䁕ܾሺ香ܾ㌳െ,试卷第8页,总10页
由点ሺ݇െ在直线上,得ܾ䁕݇ሺെ,线段的长为:ܾ䁕,ܾ线段的长为݇䁕,∵、到原点的距离之和等于,∴ሺെ䁕,解得:䁕,䁕,∴ܾ䁕݇,ܾ䁕݇,直线的解析式为:䁕݇或䁕݇.36.解:设晦䁕,则䁕݇.∵䁕,∴䁕,∵晦䁕,∴晦䁕.在晦与中,晦䁕,晦䁕∴晦,∴晦㌳䁕㌳,∴㌳䁕:ሺ݇െ,整理得:݇݇䁕,∴䁕,䁕݇(不合题意舍去),∴晦䁕果.37.解:由抛物线经过晦ሺ݇݇െ、ሺെ两点可得ܾ䁕݇,䁕݇ሺെܾ݇香∴䁕݇䁕䁕䁕ሺെ香䁕ሺെ.当䁕݇时,䁕最小此时,ܾ䁕,䁕香,∴函数的解析式为:䁕݇香.试卷第9页,总10页
∴ሺ݇െ,ሺെ,此时,四边形晦的面积䁕•ሺ晦െ䁕ሺെ䁕香.试卷第10页,总10页