2021年初中毕业生学业考试数学试卷苏州市中考数学试卷本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生条必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、性名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应是目的答案标号涂黑,如需改动,请用擦皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算的结果是A.B.3C.D.92.如图,圆锥的主视图是3.如图,在方格纸中,将R△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是4.已知两个不等于0的实数a、b满足a+b=0.则等于A.B.C.1D.2
5.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表:则每个班级回收废纸的平均重量为A.5kgB.4.8kgC.4.6kgD.4.5kg6.已知点A(,m),B(,n)在一次函数y=2x+1的图像上,则m与n的大小关系是A.m>nB.m=nC.m0)的图像经过点B,求k的值.
25.(本题满分8分)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED:(2)若AB=4.BC=6.∠ABC=60°.求tan∠DCB的值.26.(本题满分10分)如图,二次两数(m是实数,且-1”、“=”或“<”);(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.
2021年初中毕业生学业考试数学试卷苏州市中考数学试卷本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生条必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、性名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应是目的答案标号涂黑,如需改动,请用擦皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.计算的结果是A.B.3C.D.92.如图,圆锥的主视图是3.如图,在方格纸中,将R△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是4.已知两个不等于0的实数a、b满足a+b=0.则等于A.B.C.1D.2
5.为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表:则每个班级回收废纸的平均重量为A.5kgB.4.8kgC.4.6kgD.4.5kg6.已知点A(,m),B(,n)在一次函数y=2x+1的图像上,则m与n的大小关系是A.m>nB.m=nC.m<nD.无法确定7.某公司上半年坐产甲、乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架.乙种型号无人机y架,相根题意可列出的方程组是8.已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是A.或2B.C.2D.9.如图,在平行四边形ABCD中,将△ABC沿着AC所在的直线翻折得到△AB′C,B′C交AD于点E,连接B′D.若∠B=60°,∠ACB=45°.AC=.则B′D的长是A.1B.C.D.
10.如图,线段AB=10,点C、D在AB上,AC=BD=1.已知点P从点C出发,以每秒1个单位长度的速度沿着AB向点D移动,到达点D后停止移动.在点P移动过程中作如下操作:先以点P为圆心,PA、PB的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点P的移动时间为t(秒),两个圆锥的底面面积之和为S,则S关于t的函数图像大致是二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.11.全球平均每年发生的雷电次数约为16000000次,数据16000000用科学记数法可表示为▲.12.因式分解:=▲.13.一个小球在如图所示的方格地砖上任意动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是▲.14.如图,在Rt△ABC中,∠C=90°.AF=EF.若∠CFE=72°.则∠B=▲°.15.若m+2n=1.则3m2+6mn+6n的值为▲.16.若2x+y=1.且0<y<1.则x的取值范围为▲.17.如图,四边形ABCD为菱形,∠ABC=70°,延长BC到E,在∠DCE内作射线CM
,使得∠ECM=15°,过点D作DF⊥CM,垂足为F.若DF=,则对角线BD的长为▲.(结果保留根号)18.如图,射线OM、ON互相垂直,OA=8,点B位于射线OM的上方,且在线段OA的垂直平分线上,连接AB,AB=5.将线段AB绕点O按逆时针方向旋转得到对应线段A′B′,若点B′恰好落在射线ON上,则点A′到射线ON的距离=▲.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分5分)计算:.20.(本题满分5分)解方程组:21.(本题满分6分)先化简,再求值:,其中x=.22.(本题满分6分)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程.为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为▲名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“陶艺”课程的学生占▲%;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?23.(本题满分8分)4张相同的卡片上分别写有数字0、1、-2、3,将卡片的背面朝上,洗匀后从中任意抽取1张,将卡片上的数字记录下来:再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是负数的概率为▲;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用画树状图或列表等方法说明理由)24.(本题满分8分)如图,在平面直角坐标系中,四边形OABC为矩形,点C、A分别在x轴和y轴的正半轴上,点D为AB的中点.已知实数k≠0,一次函数的图像经过点C、D,反比例函数(x>0)的图像经过点B,求k的值.
25.(本题满分8分)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE=AB,连接ED.(1)求证:BD=ED:(2)若AB=4.BC=6.∠ABC=60°.求tan∠DCB的值.26.(本题满分10分)如图,二次两数(m是实数,且-1<m<0)的图像与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C.已知点D位于第一象限,且在对称轴上,OD⊥BD,点E在x轴的正半轴上,OC=EC,连接ED并延长交y轴于点F,连接AF.(1)求A、B、C三点的坐标(用数字或含m的式子表示);(2)已知点Q在抛物线的对称轴上,当△AFQ的周长的最小值等于时,求m的值.
27.(本题满分10分)如图①,甲、乙都是高为6米的长方体容器,容器甲的底面ABCD是正方形,容器乙的底面EFGH是矩形.如图②,已知正方形ABCD与矩形EFGH满足如下条件:正方形ABCD外切于一个半径为5米的圆O,矩形EFGH内接于这个圆O.EF=2EH.(1)求容器甲、乙的容积分别为多少立方米?(2)现在我们分别向容器甲、乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后,把容器甲的注水流量增加a立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变,直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为t时,我们把容器甲的水位高度记为h甲,容器乙的水位高度记为h乙,设h乙-h甲=h,已知h(米)关于注水时间t(小时)的函数图像如图③所示,其中MN平行于横轴.根据图中所给信息,解决下列问题:①求a的值;②求图③中线段PN所在直线的解析式.
28.(本题满分10分)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P点P、P,分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H与P2F相交于点Q.已知AG:GD=AE:EB=1:2.设AG=a,AE=b.(1)四边形EBHP的面积▲四边形GPFD的面积(填“>”、“=”或“<”);(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.