资料详情(61教学网)
我的位置:
2022版高中物理(山东版)一轮复习:专题四曲线运动—模拟训练(有解析)
ID:49759 2021-10-08 28页1111 1.16 MB
已阅读10 页,剩余部分需下载查看
专题四 曲线运动【5年高考】考点一 曲线运动、运动的合成与分解1.(2018江苏单科,3,3分)某弹射管每次弹出的小球速度相等。在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球。忽略空气阻力,两只小球落到水平地面的(  )A.时刻相同,地点相同  B.时刻相同,地点不同C.时刻不同,地点相同  D.时刻不同,地点不同答案 B 2.(2018北京理综,20,6分)根据高中所学知识可知,做自由落体运动的小球,将落在正下方位置。但实际上,赤道上方200m处无初速下落的小球将落在正下方位置偏东约6cm处。这一现象可解释为,除重力外,由于地球自转,下落过程小球还受到一个水平向东的“力”,该“力”与竖直方向的速度大小成正比。现将小球从赤道地面竖直上抛,考虑对称性,上升过程该“力”水平向西,则小球(  )A.到最高点时,水平方向的加速度和速度均为零B.到最高点时,水平方向的加速度和速度均不为零C.落地点在抛出点东侧D.落地点在抛出点西侧答案 D 3.(2020北京,14,6分)在无风的环境里,某人在高处释放静止的篮球,篮球竖直下落:如果先让篮球以一定的角速度绕过球心的水平轴转动(如图)再释放,则篮球在向下掉落过程中偏离竖直方向做曲线运动。其原因是,转动的篮球在运动过程中除受重力外,还受到空气施加的阻力f1和偏转力f2。这两个力与篮球速度v的关系大致为:f1=k1v2,方向与篮球运动方向相反:f2=k2v,方向与篮球运动方向垂直。下列说法正确的是(  )A.k1、k2是与篮球转动角速度无关的常量B.篮球可回到原高度且角速度与释放时的角速度相同C.人站得足够高,落地前篮球有可能向上运动D.释放条件合适,篮球有可能在空中持续一段水平直线运动答案 C 4.(2016课标Ⅰ,18,6分)(多选)一质点做匀速直线运动。现对其施加一恒力,且原来作用在质点上的力不发生改变,则(  )A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变答案 BC 考点二 抛体运动,1.(2020课标Ⅱ,16,6分)如图,在摩托车越野赛途中的水平路段前方有一个坑,该坑沿摩托车前进方向的水平宽度为3h,其左边缘a点比右边缘b点高0.5h。若摩托车经过a点时的动能为E1,它会落到坑内c点,c与a的水平距离和高度差均为h;若经过a点时的动能为E2,该摩托车恰能越过坑到达b点。等于(  )A.20  B.18C.9.0  D.3.0答案 B 2.(2016江苏单科,2,3分)有A、B两小球,B的质量为A的两倍。现将它们以相同速率沿同一方向抛出,不计空气阻力。图中①为A的运动轨迹,则B的运动轨迹是(  )                  A.①  B.②C.③  D.④答案 A 3.(2019课标Ⅱ,19,6分)(多选)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。则(  )A.第二次滑翔过程中在竖直方向上的位移比第一次的小B.第二次滑翔过程中在水平方向上的位移比第一次的大C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大答案 BD 4.(2015浙江理综,17,6分)如图所示为足球球门,球门宽为L。一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点)。球员顶球点的高度为h。足球做平抛运动(足球可看成质点,忽略空气阻力),则(  )A.足球位移的大小x=B.足球初速度的大小v0=C.足球末速度的大小v=,D.足球初速度的方向与球门线夹角的正切值tanθ=答案 B 5.(2015课标Ⅰ,18,6分)一带有乒乓球发射机的乒乓球台如图所示。水平台面的长和宽分别为L1和L2,中间球网高度为h。发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h。不计空气的作用,重力加速度大小为g。若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是(  )A.ha,xa>xb>xc,则D正确C错误。7.(2016上海单科,23,4分)如图,圆弧形凹槽固定在水平地面上,其中ABC是位于竖直平面内以O为圆心的一段圆弧,OA与竖直方向的夹角为α。一小球以速度v0从桌面边缘P水平抛出,恰好从A点沿圆弧的切线方向进入凹槽。小球从P到A的运动时间为    ;直线PA与竖直方向的夹角β=    。 答案  arctan(2cotα)解析 据题意,小球从P点抛出后做平抛运动,小球运动到A点时将速度分解,有tanα==,则小球运动到A点的时间为:t=;tanβ====2cotα,所以PA与竖直方向的夹角为:β=arctan(2cotα)。8.(2015重庆理综,8,16分)同学们参照伽利略时期演示平抛运动的方法制作了如图所示的实验装置。图中水平放置的底板上竖直地固定有M板和N板。M板上部有一半径为R的圆弧形的粗糙轨道,P为最高点,Q为最低点,Q点处的切线水平,距底板高为H。N板上固定有三个圆环。将质量为m的小球从P处静止释放,小球运动至Q飞出后无阻碍地通过各圆环中心,落到底板上距Q水平距离为L处。不考虑空气阻力,重力加速度为g。求:(1)距Q水平距离为的圆环中心到底板的高度;(2)小球运动到Q点时速度的大小以及对轨道压力的大小和方向;(3)摩擦力对小球做的功。答案 (1)H(2)L mg 方向竖直向下(3)mg解析 (1)设小球在Q点的速度为v,则有:L=vtH=gt2解得:v=L当x=时,有:=vt1h1=g解得:h1=则距Q水平距离为的圆环中心到底板的高度h=H-h1=H。(2)由(1)知小球运动到Q点时速度的大小v=L在Q点,根据牛顿第二定律有:FN-mg=m解得:FN=mg由牛顿第三定律可知,小球对轨道压力的大小FN'与FN相等,方向竖直向下。(3)从P到Q,应用动能定理有:mgR+Wf=mv2-0解得:Wf=-mgR=mg。9.(2015海南单科,14,13分)如图,位于竖直平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点。已知h=2m,s=m。取重力加速度大小g=10m/s2。,(1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小。答案 (1)0.25m (2)m/s解析 (1)设环到b点时速度为vb,圆弧轨道半径为r,小环从a到b过程中机械能守恒,有mgr=m①环与bc段轨道间无相互作用力,从b到c环做平抛运动:h=gt2②s=vbt③联立可得r=④代入数据得r=0.25m(2)环从b点由静止下滑至c点过程中机械能守恒,设到c点时速度为vc,则mgh=m⑤在bc段两次过程中环沿同一轨迹运动,经过同一点时速度方向相同设环在c点时速度与水平方向间的夹角为θ,则环做平抛运动时tanθ=⑥vy=gt⑦联立①②⑥⑦式可得tanθ=2⑧则环从b点由静止开始滑到c点时速度的水平分量为vcx=vccosθ⑨联立⑤⑧⑨三式可得vcx=m/s10.(2016浙江理综,23,16分)在真空环境内探测微粒在重力场中能量的简化装置如图所示。P是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒。高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h。(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;(2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系。答案 (1) (2)L≤v≤L (3)L=2h,解析 (1)打在探测屏中点的微粒有h=gt2①t=②(2)打在B点的微粒v1=;2h=g③v1=L④同理,打在A点的微粒初速度v2=L⑤则微粒的初速度范围为L≤v≤L⑥(3)由能量关系m+mgh=m+2mgh⑦代入④、⑤式L=2h⑧方法技巧 解决本题的关键是抓住能被探测到的微粒所满足的运动学特征:下降高度在h~2h、水平位移相同且都为L。11.(2014浙江理综,23,16分)如图所示,装甲车在水平地面上以速度v0=20m/s沿直线前进,车上机枪的枪管水平,距地面高为h=1.8m。在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触。枪口与靶距离为L时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v=800m/s。在子弹射出的同时,装甲车开始匀减速运动,行进s=90m后停下。装甲车停下后,机枪手以相同方式射出第二发子弹。(不计空气阻力,子弹看成质点,重力加速度g=10m/s2)(1)求装甲车匀减速运动时的加速度大小;(2)当L=410m时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离;(3)若靶上只有一个弹孔,求L的范围。答案 (1)m/s2 (2)0.55m 0.45m(3)492mrA可知vB>vA,A错误;向心加速度a=ω2r,因ω相等r不等,故a不相等,B错误;水平方向mgtanθ=mω2r,即tanθ=,因rB>rA,故θB>θA,C错误;竖直方向Tcosθ=mg,绳子拉力T=,因θB>θA,故TB>TA,D正确。4.(2018天津理综,2,6分)滑雪运动深受人民群众喜爱。某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB,从滑道的A点滑行到最低点B的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB下滑过程中(  )A.所受合外力始终为零  B.所受摩擦力大小不变C.合外力做功一定为零  D.机械能始终保持不变答案 C 本题考查匀速圆周运动中的受力分析、滑动摩擦力的决定因素、动能定理和功能关系。由于运动员在竖直面内的圆弧形滑道上运动时速率不变,故做匀速圆周运动,所受的合外力提供向心力,因此合外力不为零,选项A错误;因运动员的速率不变,故其所受摩擦力等于重力沿滑道向下的分力,运动员沿AB下滑过程中重力沿滑道向下的分力变小,因此滑动摩擦力变小,选项B错误;由动能定理知,合外力做的功等于动能的变化量,因速率不变,则动能不变,故合外力做功为零,选项C正确;机械能的改变量等于摩擦力做的功,故机械能减少,选项D错误。易错警示 运动员的速率不变,误认为匀速圆周运动的合外力为零,误选A。5.(2017课标Ⅱ,14,6分)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环。小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力(  ),A.一直不做功  B.一直做正功C.始终指向大圆环圆心  D.始终背离大圆环圆心答案 A 本题考查功、圆周运动,考查学生的理解能力、推理能力。体现了运动与相互作用观念、能量观念及科学论证的学科素养。大圆环对小环的作用力总是沿大圆环半径方向,与速度方向垂直,故大圆环对小环的作用力不做功,选项A正确,B错误。开始时大圆环对小环的作用力方向背离大圆环圆心,一段时间后作用力方向指向大圆环圆心,故选项C、D错误。解题指导 (1)弹力的方向总是垂直于接触面,并且速度的方向总是沿接触面的切线方向,因此在固定接触面上滑动时,弹力总不做功。(2)重力在半径方向上的分量与大圆环对小环的作用力的矢量和提供小环做圆周运动的向心力,设小环转过的角度为θ,如图所示,小环此时的速度为v,大圆环对小环的作用力为N,由功能关系和圆周运动公式有mv2=mgR(1-cosθ)m=mgcosθ-N解出N=3mgcosθ-2mg由此可知,当3mgcosθ>2mg时,N的方向背离大圆环圆心,当3mgcosθ<2mg时,N的方向指向大圆环圆心。6.(2017江苏单科,5,3分)如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上。物块质量为M,到小环的距离为L,其两侧面与夹子间的最大静摩擦力均为F。小环和物块以速度v向右匀速运动,小环碰到杆上的钉子P后立刻停止,物块向上摆动。整个过程中,物块在夹子中没有滑动。小环和夹子的质量均不计,重力加速度为g。下列说法正确的是(  )A.物块向右匀速运动时,绳中的张力等于2FB.小环碰到钉子P时,绳中的张力大于2FC.物块上升的最大高度为D.速度v不能超过答案 D 本题考查了圆周运动的应用、向心力、机械能守恒定律。以物块的运动为载体,考查了考生的理解能力、推理能力,体现了对物理观念、科学思维和科学探究的素养考查。设夹子与物块间静摩擦力为f,匀速运动时,绳中张力T=Mg=2f,摆动时,物块没有在夹子中滑动,说明匀速运动过程中,夹子与物块间的静摩擦力没有达到最大值,A错;碰到钉子后,物块开始在竖直面内做圆周运动,,在最低点,对整体有T'-Mg=M,对物块有2f-Mg=M,所以T'=2f,由于f≤F,所以选项B错;由机械能守恒得,MgHmax=Mv2,所以Hmax=,选项C错;若保证物块不从夹子中滑落,应保证速度为最大值vm时,在最低点满足关系式2F-Mg=M,所以vm=,选项D正确。7.(2016课标Ⅱ,16,6分)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短。将两球拉起,使两绳均被水平拉直,如图所示。将两球由静止释放。在各自轨迹的最低点(  )A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度答案 C 本题利用不同摆球的运动,体现了运动与相互作用观念、能量观念,考查了推理探究能力。设小球的质量为m,绳长为L,根据动能定理得mgL=mv2,解得v=,LPmQ,LPmQ,所以P球所受绳的拉力大于Q球所受绳的拉力,故C项正确。向心加速度a==2g,所以在轨迹的最低点,P、Q两球的向心加速度相同,故D项错误。8.(2016海南单科,3,6分)如图,光滑圆轨道固定在竖直面内,一质量为m的小球沿轨道做完整的圆周运动。已知小球在最低点时对轨道的压力大小为N1,在最高点时对轨道的压力大小为N2。重力加速度大小为g,则N1-N2的值为(  )A.3mg  B.4mgC.5mg  D.6mg答案 D 设小球在最低点时速度为v1,在最高点时速度为v2,根据牛顿第二定律有,在最低点有N1-mg=,在最高点有N2+mg=;从最高点到最低点,根据机械能守恒定律有mg·2R+=,联立可得N1-N2=6mg,故选项D正确。9.(2015天津理综,4,6分)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示。当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力。为达到上述目的,下列说法正确的是(  )A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小答案 B 宇航员在舱内受到的支持力与他站在地球表面时受到的支持力大小相等,mg=mω2r,即g=ω2r,可见r越大,ω就应越小,B正确,A错误;角速度与质量m无关,C、D错误。,10.(2014课标Ⅱ,17,6分)如图,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下。重力加速度大小为g。当小环滑到大环的最低点时,大环对轻杆拉力的大小为(  )A.Mg-5mg  B.Mg+mgC.Mg+5mg  D.Mg+10mg答案 C 解法一 以小环为研究对象,设大环半径为R,根据机械能守恒定律,得mg·2R=mv2,在大环最低点有FN-mg=m,得FN=5mg,此时再以大环为研究对象,受力分析如图,由牛顿第三定律知,小环对大环的压力为FN'=FN,方向竖直向下,故F=Mg+5mg,由牛顿第三定律知C正确。解法二 设小环滑到大环最低点时速度为v,加速度为a,根据机械能守恒定律mv2=mg·2R,且a=,所以a=4g,以整体为研究对象,受力情况如图所示。F-Mg-mg=ma+M·0所以F=Mg+5mg,C正确。11.(2019天津理综,10,16分)完全由我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功。航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图1所示。为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意如图2,AB长L1=150m,BC水平投影L2=63m,图中C点切线方向与水平方向的夹角θ=12°(sin12°≈0.21)。若舰载机从A点由静止开始做匀加速直线运动,经t=6s到达B点进入BC。已知飞行员的质量m=60kg,g=10m/s2,求(1)舰载机水平运动的过程中,飞行员受到的水平力所做功W;(2)舰载机刚进入BC时,飞行员受到竖直向上的压力FN多大。答案 (16分)(1)7.5×104J (2)1.1×103N解析 本题考查匀变速直线运动、动能定理、圆周运动。通过对舰载机整个起飞过程的运动分析、受力分析,以及学生的综合分析能力,体现了科学推理的核心素养。国产航母是大国重器,通过本题也能厚植爱国情怀。(1)舰载机由静止开始做匀加速直线运动,设其刚进入上翘甲板时的速度为v,则有=①,根据动能定理,有W=mv2-0②联立①②式,代入数据,得W=7.5×104J③(2)设上翘甲板所对应的圆弧半径为R,根据几何关系,有L2=Rsinθ④由牛顿第二定律,有FN-mg=m⑤联立①④⑤式,代入数据,得FN=1.1×103N⑥一题多解 对(1)问:舰载机由静止开始做匀加速直线运动设其匀加速阶段的加速度大小为a,则有L1=at2①对飞行员分析得F=ma②飞行员受到的水平力所做的功W=FL1③联立①②③得W=7.5×104J12.(2013福建理综,20,15分)如图,一不可伸长的轻绳上端悬挂于O点,下端系一质量m=1.0kg的小球。现将小球拉到A点(保持绳绷直)由静止释放,当它经过B点时绳恰好被拉断,小球平抛后落在水平地面上的C点。地面上的D点与OB在同一竖直线上,已知绳长L=1.0m,B点离地高度H=1.0m,A、B两点的高度差h=0.5m,重力加速度g取10m/s2,不计空气影响,求:(1)地面上D、C两点间的距离s;(2)轻绳所受的最大拉力大小。答案 (1)1.41m (2)20N解析 (1)小球从A到B过程机械能守恒,有mgh=m①小球从B到C做平抛运动,在竖直方向上有H=gt2②在水平方向上有s=vBt③由①②③式解得s=1.41m④(2)小球下摆到达B点时,绳的拉力和重力的合力提供向心力,有F-mg=m⑤由①⑤式解得F=20N根据牛顿第三定律,F'=-F轻绳所受的最大拉力为20N。【3年模拟】时间:20分钟 分值:29分一、单项选择题(每小题3分,共21分)                  1.(2021届山东临沂高三期中,1)图示为空降兵某旅新兵开展首次大飞机跳伞训练,数千名新兵在严寒天气下经历高强度伞降磨砺,为成为一名合格的空降兵战斗员蓄力跃进。当空降兵从飞机上由静止跳下后,在下落过程中将会受到水平风速的影响,关于空降兵下列说法中正确的是(  )A.风速越大,下落时间越长B.风速越大,着地速度越小C.风速越大,动量变化越大D.风速越大,着地时重力的功率越大答案 C 2.(2021届山东烟台高三期中,8)如图所示,在倾角为37°足够长的斜面顶端,一小球以与斜面成30°角的初速度v抛出,小球最终落在斜面上。不计空气阻力,sin37°=0.6,重力加速度为g,则从抛出小球到小球与斜面的距离最大时,小球飞行时间t为 (  )A.  B.  C.  D.答案 C 3.(2021届山东济南第一中学高三期中,6)如图所示为一种修正带,其核心结构包括大小两个齿轮、压嘴座等部件,大小两个齿轮分别嵌合于大小轴孔中,并且齿轮相互吻合良好,a、b点分别位于大小齿轮的边缘且Ra∶Rb=3∶2,c点位于大齿轮的半径中点,当纸带以速度v匀速走动时b、c点的向心加速度之比是(  )A.1∶3  B.2∶3  C.3∶1  D.3∶2答案 C 4.(2020山东枣庄第一中学高一期中,7)日常生活中可以利用离心运动甩干衣物上的水分,如图已知甩干桶直径为0.5m,工作时转速为r/s,则甩干过程中衣物和桶壁之间的弹力与衣物所受重力的比值为(g=10m/s2)(  ),A.80  B.40  C.20  D.10答案 B 5.(2020山东枣庄第三中学高一期中,5)如图所示,圆锥摆甲乙的摆长之比为2∶1,两摆球的质量相同,今使两圆锥摆做顶角分别为30°、60°的圆锥摆运动,则(  )A.两摆球的向心加速度之比为1∶3B.两圆锥摆的运动周期之比为2∶1C.摆球的线速度之比为1∶1D.摆球的角速度之比为1∶2答案 A 6.(2020山东枣庄第三中学高一期中,3)水平抛出的小球,t秒末的速度方向与水平方向的夹角为α1,t+t0秒末的总位移方向与水平方向的夹角为α2,重力加速度为g,忽略空气阻力,则小球初速度的大小可表示为(  )A.  B.C.  D.答案 D 7.(2020山东聊城一中三模,3)某同学参加学校运动会立定跳远项目比赛,起跳直至着地过程如图,测量得到比赛成绩是2.4m,空中该同学脚离地最大高度约0.8m,假设该同学的质量为60kg。忽略空气阻力,则起跳过程该同学所做功为(g=10m/s2)(  )A.750J  B.480J  C.270J  D.1470J答案 A 二、多项选择题(每小题4分,共8分)8.(2020山东烟台高一期中,11)如图所示,在与水平地面夹角为θ=30°的光滑斜面上有一半径为R=0.1m的光滑圆轨道,一质量为m=0.2kg的小球在圆轨道内沿轨道做圆周运动,g=10m/s2,下列说法中正确的是(  )A.小球能通过圆轨道最高点的最小速度为0B.小球能通过圆轨道最高点的最小速度为1m/s,C.小球以2m/s的速度通过圆轨道最低点时对轨道的压力为9ND.小球通过圆轨道最低点和最高点时对圆轨道的压力之差为6N答案 CD 9.(2020山东菏泽高一期中,10)一个物体以初速度v0水平抛出,落地时速度为v,则(  )A.物体在空中运动的时间是B.物体在空中运动的时间是C.物体抛出时的高度是D.物体抛出时的高度是答案 BD [教师专用题组]【3年模拟】A组一、选择题1.(2019海南单科,10,5分)(多选)三个小物块分别从3条不同光滑轨道的上端由静止开始滑下。已知轨道1、轨道2、轨道3的上端距水平地面的高度均为4h0;它们的下端水平,距地面的高度分别为h1=h0、h2=2h0、h3=3h0,如图所示。若沿轨道1、2、3下滑的小物块的落地点到轨道下端的水平距离分别记为s1、s2、s3,则(  )                  A.s1>s2  B.s2>s3  C.s1=s3  D.s2=s3答案 BC 根据mgh=mv2得小物块离开轨道时的水平速度v=,轨道1、2、3下滑的小物块的初速度之比为∶∶1,由h=gt2,可知t=,轨道1、2、3下滑的小物块的时间之比为1∶∶,根据x=vt可知,小物块的落地点到轨道下端的水平距离之比s1∶s2∶s3=∶2∶,故选项B、C正确,A、D错误。2.(2018浙江4月选考,4,3分)A、B两艘快艇在湖面上做匀速圆周运动(如图),在相同时间内,它们通过的路程之比是4∶3,运动方向改变的角度之比是3∶2,则它们(  )A.线速度大小之比为4∶3  B.角速度大小之比为3∶4C.圆周运动的半径之比为2∶1  D.向心加速度大小之比为1∶2,答案 A 本题考查了圆周运动的应用和线速度、角速度、向心加速度。以快艇的匀速圆周运动为载体,考查了考生的理解能力、推理能力,体现了对模型建构、科学推理的素养考查。时间相同,路程之比即线速度大小之比,故A项正确;运动方向改变的角度之比即路程对应扫过的圆心角之比,由于时间相同,角速度大小之比为3∶2,B项错误;由路程和半径与圆心角之间的关系为s=rθ得半径之比为8∶9,C项错误;由向心加速度a=知向心加速度大小之比为2∶1,D项错误。3.(2019山东济南3月模拟,16,6分)曲柄连杆结构是发动机实现工作循环,完成能量转换的主要运动零件。如图所示,连杆下端连接活塞Q,上端连接曲轴P。在工作过程中,活塞在汽缸内上下做直线运动,带动曲轴绕圆心O旋转。若P做线速度大小为v0的匀速圆周运动,则下列说法正确的是(  )A.当OP与OQ垂直时,活塞运动的速度等于v0B.当OP与OQ垂直时,活塞运动的速度大于v0C.当O、P、Q在同一直线上时,活塞运动的速度等于v0D.当O、P、Q在同一直线上时,活塞运动的速度大于v0答案 A 当OP与OQ垂直时,设∠PQO=θ,此时活塞的速度为v,将P点的速度分解为沿杆方向和垂直于杆方向的分速度;将活塞的速度v分解为沿杆方向和垂直于杆方向的分速度,则此时v0cosθ=vcosθ,即v=v0,选项A正确,B错误;当O、P、Q在同一直线上时,P点沿杆方向的分速度为零,则活塞运动的速度等于0,故选项C、D错误。4.(2020山东德州期中,8)如图所示,小球自足够长的斜面上的O点水平抛出,落至斜面时速度与斜面方向的夹角用α表示,不计空气阻力,对小球在空中的运动过程以下说法正确的是(  )A.初速度越大,α角越大B.初速度越大,α角越小C.运动时间与初速度成正比D.下落的高度与初速度成正比答案 C 设斜面的倾斜角为θ,小球从斜面上做平抛运动又落回到斜面上,位移与水平方向间的夹角等于斜面的倾斜角θ,落到斜面时的速度与水平方向间的夹角为α+θ,再根据速度夹角和位移夹角关系式tan(α+θ)=2tanθ知,α角和初速度无关,故A、B错误;根据位移的夹角公式tanθ==,得t=,可知运动时间与初速度成正比,故C正确;由h=gt2,t=,得h=,即下落的高度h与初速度二次方成正比,故D错误。5.(2019山东滨州二模,17)如图所示,在竖直平面内有一曲面,曲面方程为y=x2,在y轴上有一点P,坐标为(0,6m)。从P点将一小球水平抛出,初速度为1m/s。则小球第一次打在曲面上的位置为(g取10m/s2)(  ),A.(3m,3m)  B.(2m,4m)C.(1m,1m)  D.(1m,2m)答案 C 设小球第一次打在曲面上的位置为(x,y),小球在水平方向有:x=v0t;竖直方向有:6-y=gt2,x、y满足曲面方程,则y=x2,联立各式并把g=10m/s2、v0=1m/s代入解得x=1m,y=1m,则小球第一次打在曲面上的位置为(1m,1m),故选项C正确。6.人用绳子通过定滑轮拉物体A,A穿在光滑的竖直杆上,当以速度v0匀速地拉绳使物体A到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A实际运动的速度是(  )                  A.v0sinθ  B.C.v0cosθ  D.答案 D 由运动的合成与分解可知,物体A参与这样的两个分运动,一个是沿着与它相连接的绳子的运动,另一个是垂直于绳子斜向上的运动。而物体A实际运动轨迹是沿着竖直杆向上的,这一轨迹所对应的运动就是物体A的合运动,它们之间的关系如图所示。由三角函数知识可得v=,所以D选项是正确的。7.一斜面体放置在水平地面上,其倾角如图所示,两个小球P、Q分别从图示位置以相同的速度水平抛出,两个小球落到斜面上时,其速度方向均与斜面垂直。则下面说法中正确的是(  )A.P、Q两球在空中运动的时间之比为1∶2B.P、Q两球在空中运动的时间之比为2∶1C.P、Q两球在水平方向通过的距离之比为9∶1D.P、Q两球在竖直方向下落的距离之比为9∶1答案 D 设两球水平初速度为v,根据几何知识可得,tanθ=,即tanθ与t成反比,故==3,故A、B错;水平方向通过的距离为x=vt,可知水平位移与时间成正比,故为3∶1,故C错;竖直方向下落的距离为h=gt2,竖直方向下落的距离与时间的平方成正比,故D对。8.如图,窗子上、下沿间的高度H=1.6m,墙的厚度d=0.4m,某人在离墙壁距离L=1.4m、距窗子上沿h=0.2m处的P点,将可视为质点的小物件以v的速度水平抛出,小物件直接穿过窗口并落在水平地面上,取g=10m/s2。则v的取值范围是(  )                  ,A.v>7m/s  B.v<2.3m/sC.3m/s0.75m×tan37°,即小球做平抛运动没有落到圆锥表面上,所以落地点到OO'的距离为0.8m。B组选择题1.(2015山东理综,14,6分)距地面高5m的水平直轨道上A、B两点相距2m,在B点用细线悬挂一小球,离地高度为h,如图。小车始终以4m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地。不计空气阻力,取重力加速度的大小g=10m/s2。可求得h等于(  )A.1.25m  B.2.25m  C.3.75m  D.4.75m答案 A 小车由A运动到B的时间为s=0.5s,对左侧小球,5m=gt2,对右侧小球,h=g(t-0.5s)2,解得h=1.25m,所以A正确。2.(2020山东潍坊一模,3)某同学练习定点投篮,篮球从同一位置出手,两次均垂直撞在竖直篮板上,其运动轨迹如图所示,不计空气阻力,下列说法正确的是(  )A.第1次击中篮板时的速度小B.两次击中篮板时的速度相等C.球在空中运动过程第1次速度变化快D.球在空中运动过程第2次速度变化快答案 A 试题以定点投篮为情境,考查平抛运动等必备知识,主要考查理解能力、推理论证能力,体现了物理观念、科学思维的学科素养,突出对基础性、应用性考查要求。将篮球的运动反向处理,即平抛运动,平抛运动在水平方向做匀速直线运动,水平射程相等,但第1次用的时间较长,故第1次水平分速度较小,即篮球第1次击中篮板时速度小,故选项A正确,B错误;两次球在运动过程中的加速度相等,等于重力加速度,两次速度变化一样快,故选项C、D错误。3.(2020山东菏泽期中,5)2019年春节期间电影《流浪地球》的热播使人们关注到影视中“领航员号”空间站通过让圆形空间站旋转的方法获得人工重力的情形,即刘培强中校到达空间站时电脑“慕斯”所讲的台词“离心重力启动”,空间模型如图,已知空间站半径为1000米,为了使宇航员感觉跟在地球表面上的时候一样“重”,g取10m/s2,空间站转动的角速度为(  )A.10rad/s  B.1rad/s  C.0.1rad/s  D.0.01rad/s,答案 C 空间站中宇航员做匀速圆周运动,使宇航员感受到与地球一样的“重力”是向心力所致,则根据g=ω2r,则ω==0.1rad/s,故C正确,A、B、D错误。4.(2020山东青岛即墨期中,6)我国改革开放以来,高速公路从无到有,通车总里程达到14.3万公里,位居世界第一。科学研究表明,在过于平坦、笔直的路面上高速行车极易发生车祸,在修建高速公路时要间隔设计弯道,迫使司机集中注意力并控制车辆行驶速度,从而减少车祸的发生。高速公路某处弯道半径为R,路面宽度为d,路面内外侧高度差为h,且路面倾角θ很小,可以认为tanθ=sinθ,汽车轮胎与路面间的动摩擦因数为μ,重力加速度为g,则汽车通过该弯道的最合理速度为(  )A.  B.C.  D.答案 C 本题考查了向心力和牛顿第二定律知识,以及理解能力、推理能力,体现了物理观念中物质观念、运动与相互作用观念的要素和科学思维中模型建构、科学推理的要素。汽车转弯时没有侧向的摩擦力,由重力和支持力的合力提供转弯的向心力时速度最合理的,受力如图:由牛顿第二定律得:mgtanθ=m,因为路面倾角θ很小,可以认为:tanθ=sinθ=,联立解得:v=,故A、B、D错误,C正确。5.(2020山东临沂期中,11)(多选)在某次比赛中,一战士在同一位置同一高度沿同一水平方向用不同型号的枪各射出一颗子弹,打在100m远处的靶子上,靶纸如图所示,两弹孔在竖直方向相距11.25cm,其中A为甲枪的子弹孔,B为乙枪的子弹孔,已知甲枪子弹射出时的速度为500m/s,g=10m/s2,不计空气阻力,下列说法正确的是(  )A.甲枪射出的子弹速度较大B.乙枪射出的子弹速度较大C.乙枪子弹射出时的速度为400m/sD.乙枪子弹射出时的速度为300m/s答案 AC 甲枪射出的子弹下落的高度为:h=g=×10×0.04m=0.2m。乙枪射出的子弹下落的高度为:h'=h+l=0.2m+0.1125m=0.3125m,则乙枪子弹运动的时间为t2==s=0.25s,乙枪子弹射出的速度大小为:v==m/s=400m/s。可知甲枪射出的子弹速度较大,故选项A、C正确,B、D错误。6.如图甲所示的过山车轨道,有连续两个环,我们把它简化为如图乙的模型,忽略一切阻力,假设大环的半径是小环半径的1.5倍,当过山车经过大环的最低点和最高点时,轨道对过山车的压力差绝对值为ΔN1,当过山车经过小环的最低点和最高点时,轨道对过山车的压力差绝对值为ΔN2,则下面说法中正确的是(  ),图甲图乙                  A.ΔN2=ΔN1  B.ΔN2=1.5ΔN1C.ΔN1=1.5ΔN2  D.ΔN1=3ΔN2答案 A 假设题图乙中小环的半径为R,在最低点,根据牛顿运动定律可得:FN1-mg=m在最高点,根据牛顿运动定律可得:FN2+mg=m根据机械能守恒定律可得:m=m+mg·2R解得:FN1-FN2=6mg可知压力差和半径无关,和初速度也无关,故选A。7.如图甲所示,一名运动员在参加跳远比赛。其运动轨迹可以简化为如图乙所示。假设跳远运动员落入沙坑前经过了P、Q两点,经过P、Q两点时的速度方向与水平方向的夹角分别为37°和45°。若运动员可视为质点,不计空气阻力,则P、Q两点连线与水平方向夹角的正切值为(sin37°=0.6,cos37°=0.8)(  )A.  B.  C.  D.答案 C 运动员腾空时,从最高点到落地过程中,做平抛运动。将运动员经过P、Q两点的速度分解,如图所示。连接P、Q,与水平方向的夹角为θ,则tanθ=。由图中几何关系和运动学公式,可得x=v0t,y=(v1+v2)t。由图中几何关系可得v1=v0tan37°,v2=v0tan45°。联立方程可得tanθ==(tan37°+tan45°)=。选项C正确,选项A、B、D错误。8.(2019山东泰安一中统考)如图所示,有一竖直放置的直角架,表面光滑,滑块A、B分别套在水平杆与竖直杆上,A、B用一不可伸长的轻绳相连,A、B质量相等,且可看成质点。开始时轻绳水平伸直,A、B静止。由静止释放B后,已知当轻绳与竖直方向的夹角为60°时,滑块B沿着竖直杆下滑的速度为v,则A的速度为(  )A.v  B.vC.v  D.v答案 D 将滑块A、B的速度沿图示方向分解,根据几何知识可得滑块B沿绳子方向上的分速度为v1=vcos60°,滑块A沿绳子方向上的分速度为vA1=vAsin60°,因为v1=vA1,则有vA==v,故D正确。,
相关课件
更多相关资料
展开
2022年高考语文二轮复习:名篇名句默写 专项练习题精选汇编(Word版,含答案) 2022年中考道德与法治答题具体步骤与技巧复习指南(实用!) 2022年高考地理一轮复习:环境保护 专项练习题汇编(含答案解析) 2022新高考数学人教A版一轮总复习训练11.4抽样方法与总体分布的估计专题检测(带解析) 2022新高考数学人教A版一轮总复习训练11.1随机事件、古典概型与几何概型专题检测(带解析) 2022高考生物(山东版)一轮总复习专题26基因工程与生物技术的安全性和伦理问题专题检测(有解析)
免费下载这份资料?
立即下载