2022新高考数学(江苏版)一轮复习训练:第三章第10讲函数模型及其应用(附解析)
展开
[A级 基础练]1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是( )A.y=100x B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.故选C.2.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图象是( )解析:选D.依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知D项符合要求.3.“酒驾猛于虎”,所以交通法规规定:驾驶员在驾驶机动车时血液中酒精含量不得超过0.2mg/mL.假设某人喝了少量酒,血液中酒精含量迅速上升到0.8mg/mL,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则他至少要经过多少个小时后才可以驾驶机动车.( )A.1B.2C.3D.4解析:选B.设n个小时后才可以驾驶机动车,则0.8×(1-50%)n=0.2.解得n=log0.50.25=2.即至少要经过2个小时后才可以驾驶机动车.故选B.4.(2020·四川绵阳模拟)2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:
购票人数1~5051~100100以上门票价格13元/人11元/人9元/人两个旅游团队计划游览该景点,若分别购票,则共需支付门票费1290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为( )A.20B.30C.35D.40解析:选B.设两个旅游团队的人数分别为a,b,且a,b∈N*,不妨令a≥b.因为1290不能被13整除,所以a+b≥51.若51≤a+b≤100,则11(a+b)=990,得a+b=90,①由共需支付门票费为1290元可知,11a+13b=1290,②联立①②解得b=150,a=-60,不符合题意;若a+b>100,则9(a+b)=990,得a+b=110,③由共需支付门票费为1290元可知,1≤b≤50,51≤a≤100,得11a+13b=1290,④联立③④解得a=70,b=40.所以这两个旅游团队的人数之差为70-40=30.故选B.5.(2021·江苏省高考模拟考试)射线测厚技术原理公式为I=I0e-ρμt,其中I0,I分别为射线穿过被测物前后的强度,e是自然对数的底数,t为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am)低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln2≈0.6931,结果精确到0.001)( )A.0.110B.0.112C.0.114D.0.116解析:选C.由射线测厚技术原理公式得=I0e-7.6×0.8μ,所以=e-6.08μ,-ln2=-6.08μ,μ≈0.114,故选C.
6.某购物网站在11月份开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________.解析:为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.答案:37.某市用37辆汽车往灾区运送一批救灾物资,假设以vkm/h的速度直达灾区,已知某市到灾区公路线长400km,为了安全起见,两辆汽车的间距不得小于km,那么这批物资全部到达灾区的最少时间是________h.(车身长度不计)解析:设全部物资到达灾区所需时间为th,由题意可知,t相当于最后一辆车行驶了km所用的时间,因此,t==+≥2=12,当且仅当=,即v=时取等号.故这些汽车以km/h的速度匀速行驶时,所需时间最少,最少时间为12h.答案:128.(2021·陕西咸阳二模)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y(mg/m3)与时间t(h)的函数关系为y=(如图所示)实验表明,当药物释放量y<0.75(mg/m3)
时对人体无害.(1)k=________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.解析:(1)由题图可知,当t=时,y=1,所以=1,所以k=2.(2)由(1)可知,y=当t≥时,y=,令y<0.75,得t>,所以在消毒后至少经过小时,即40分钟人方可进入房间.答案:(1)2 (2)409.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0<x≤20时,求v关于x的函数解析式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.解:(1)由题意得当0<x≤4时,v=2;当4≤x≤20时,设v=ax+b,a≠0,显然v=ax+b在[4,20]内是减函数,由已知得
解得所以v=-x+,故函数v=(2)设年生长量为f(x)千克/立方米,依题意并由(1)可得f(x)=当0<x≤4时,f(x)为增函数,故f(x)max=f(4)=4×2=8;当4<x≤20时,f(x)=-x2+x=-(x2-20x)=-(x-10)2+,f(x)max=f(10)=12.5.所以当0<x≤20时,f(x)的最大值为12.5.因为8<12.5,所以当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.10.某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64ppm,继续排气4分钟后又测得浓度为32ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)之间存在函数关系y=c(c,m为常数).(1)求c,m的值;(2)若空气中一氧化碳浓度不高于0.5ppm为正常,问至少排气多少分钟,这个地下车库中的一氧化碳含量才能达到正常状态?解:(1)由题意可列方程组
两式相除,解得(2)由题意可列不等式128≤0.5,所以≤,即t≥8,解得t≥32.故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态.[B级 综合练]11.(2020·高考全国卷Ⅲ)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln19≈3)( )A.60B.63C.66D.69解析:选C.由题意可知,当I(t*)=0.95K时,=0.95K,即=1+e-0.23(t*-53),e-0.23(t*-53)=,e0.23(t*-53)=19,所以0.23(t*-53)=ln19≈3,所以t*≈66.故选C.12.(2020·新高考卷Ⅰ)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,BH∥DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均为7cm,圆孔半径为1cm,则图中阴影部分的面积为________cm2.
解析:如图,连结OA,作AQ⊥DE,交ED的延长线于Q,AM⊥EF于M,交DG于E′,交BH于F′,记过O且垂直于DG的直线与DG的交点为P,设OP=3m,则DP=5m,不难得出AQ=7,AM=7,于是AE′=5,E′G=5,所以∠AGE′=∠AHF′=,△AOH为等腰直角三角形,又AF′=5-3m,OF′=7-5m,AF′=OF′,所以5-3m=7-5m,得m=1,所以AF′=5-3m=2,OF′=7-5m=2,所以OA=2,则阴影部分的面积S=×π×(2)2+×2×2-=(cm2).答案:+413.某公司计划投资开发一种新能源产品,预计能获得10~1000万元的收益.现准备制定一个对开发科研小组的奖励方案:资金y(单位:万元)随收益x(单位:万元)的增加而增加,且奖金总数不超过9万元,同时奖金总数不超过收益的20%.(1)若建立奖励方案函数模型y=f(x),试确定这个函数的定义域、值域和的范围;(2)现有两个奖励函数模型:①y=+2;②y=4lgx-3.试分析这两个函数模型是否符合公司的要求?请说明理由.
解:(1)y=f(x)的定义域是[10,1000],值域是(0,9],∈(0,0.2].(2)①不符合,②符合.理由如下:当y=+2时,=+的最大值是>0.2,不符合公司的要求.当y=4lgx-3时,函数在定义域上为增函数,最大值为9.由≤0.2可知y-0.2x≤0.令g(x)=4lgx-3-0.2x,x∈[10,1000],则g′(x)=<0,所以g(x)在[10,1000]上单调递减,所以g(x)≤g(10)=-1<0,即≤0.2.故函数y=4lgx-3符合公司的要求.14.(2020·高考江苏卷)某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,OO′为铅垂线(O′在AB上).经测量,左侧曲线AO上任一点D到MN的距离h1(米)与D到OO′的距离a(米)之间满足关系式h1=a2;右侧曲线BO上任一点F到MN的距离h2(米)与F到OO′的距离b(米)之间满足关系式h2=-b3+6b.已知点B到OO′的距离为40米.(1)求桥AB的长度;(2)计划在谷底两侧建造平行于OO′的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元),桥墩CD每米造价k(万元)(k>0),问O′E为多少米时,桥墩CD与EF的总造价最低?解:(1)设AA1,BB1,CD1,EF1都与MN垂直,A1,B1,D1,F1
是相应垂足.由条件知,当O′B=40时,BB1=-×403+6×40=160,则AA1=160.由O′A2=160,得O′A=80.所以AB=O′A+O′B=80+40=120(米).(2)以O为原点,OO′为y轴建立平面直角坐标系xOy(如图所示).设F(x,y2),x∈(0,40),则y2=-x3+6x,EF=160-y2=160+x3-6x.因为CE=80,所以O′C=80-x,设D(x-80,y1),则y1=(80-x)2,所以CD=160-y1=160-(80-x)2=-x2+4x.记桥墩CD和EF的总造价为f(x),则f(x)=k+k=k(0<x<40).
f′(x)=k=x(x-20),令f′(x)=0,得x=20.x(0,20)20(20,40)f′(x)-0+f(x)极小值所以当x=20时,f(x)取得最小值.答:(1)桥AB的长度为120米;(2)当O′E为20米时,桥墩CD和EF的总造价最低.[C级 创新练]15.我们定义函数y=[x]([x]表示不大于x的最大整数)为“下整函数”;定义y={x}({x}表示不小于x的最小整数)为“上整函数”;例如[4.3]=4,[5]=5;{4.3}=5,{5}=5.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为x小时,则李刚应付费为(单位:元)( )A.2[x+1]B.2([x]+1)C.2{x}D.{2x}解析:选C.如x=1时,应付费2元,此时2[x+1]=4,2([x]+1)=4,排除A,B;当x=0.5时,付费为2元,此时{2x}=1,排除D,故选C.16.(2021·河南安阳模拟)5G技术的数学原理之一便是著名的香农公式:C=Wlog2.它表示:在受噪声干扰的信道中,最大信息传递速率C取决于信道带宽W、信道内信号的平均功率S、信道内部的高斯噪声功率N的大小,其中叫做信噪比.按照香农公式,若不改变带宽W,而将信噪比从1000提升至2000,则C大约增加了( )
A.10%B.30%C.50%D.100%解析:选A.将信噪比从1000提升至2000,C大约增加了=≈≈10%,故选A.