资料详情(61教学网)
我的位置:
2022新高考数学(江苏版)一轮复习训练:第三章第6讲指数与指数函数(附解析)
ID:30974 2021-09-20 8页1111 76.27 KB
已阅读8 页,剩余部分需下载查看
[A级 基础练]1.若函数f(x)=(2a-5)·ax是指数函数,则f(x)在定义域内(  )A.为增函数     B.为减函数C.先增后减D.先减后增解析:选A.由指数函数的定义知2a-5=1,解得a=3,所以f(x)=3x,所以f(x)在定义域内为增函数.2.设函数f(x)=x2-a与g(x)=ax(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,则M=(a-1)0.2与N=的大小关系是(  )A.M=NB.M≤NC.MN解析:选D.因为f(x)=x2-a与g(x)=ax(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,所以a>2,所以M=(a-1)0.2>1,N=<1,所以M>N,故选D.3.(多选)已知函数f(x)=ax-1+1(a>0,a≠1)的图象恒过点A,下列函数图象经过点A的是(  )A.y=+2B.y=|x-2|+1C.y=log2(2x)+1D.y=2x-1解析:选ABC.函数f(x)=ax-1+1(a>0,a≠1)的图象恒过点A,令x-1=0,得x=1,f(1)=2,所以恒过点A(1,2).把x=1,y=2代入各选项验证,只有D中的函数没经过该点.4.(2021·镇江模拟)已知函数f(x)=-,则f(x)是(  )A.奇函数,且在R上是增函数B.偶函数,且在(0,+∞)上是增函数C.奇函数,且在R上是减函数D.偶函数,且在(0,+∞)上是减函数 解析:选C.易知f(x)的定义域为R,f(-x)=-=-,则f(-x)+f(x)=0,所以f(x)是奇函数.函数f(x)=-显然是减函数.故选C.5.当x∈[-2,2]时,ax<2(a>0且a≠1),则实数a的取值范围是(  )A.(1,)B.C.∪(1,)D.(0,1)∪(1,)解析:选C.x∈[-2,2]时,ax<2(a>0且a≠1).若a>1,y=ax是增函数,则有a2<2,可得a<,故有1,故有0且a≠1)的图象经过第二、三、四象限,则ab的取值范围是________.解析:因为函数y=ax-b的图象经过第二、三、四象限,所以函数y=ax-b单调递减且其图象与y轴的交点在y轴的负半轴上.令x=0,则y=a0-b=1-b,由题意得解得故ab∈(0,1).答案:(0,1) 8.已知函数f(x)=的值域是[-8,1],则实数a的取值范围是________.解析:当0≤x≤4时,f(x)∈[-8,1],当a≤x<0时,f(x)∈,所以[-8,1],即-8≤-<-1,即-3≤a<0.所以实数a的取值范围是[-3,0).答案:[-3,0)9.已知函数f(x)=ax+b(a>0且a≠1)的图象过点(0,-2),(2,0).(1)求a与b的值;(2)求x∈[-2,4]时,f(x)的最大值与最小值.解:(1)因为点(0,-2),(2,0)在函数f(x)=ax+b(a>0且a≠1)的图象上,所以所以又a=-不符合题意,所以(2)由(1)可得f(x)=()x-3.因为>1,所以y=()x在其定义域上是增函数,所以f(x)=()x-3在区间[-2,4]上单调递增.所以f(x)在区间[-2,4]上的最小值为f(-2)=-,最大值为f(4)=6.10.已知函数f(x)=.(1)求f(x)的单调区间;(2)若f(x)的最大值等于,求a的值.解:(1)令t=|x|-a,则f(x)=,不论a取何值,t在(-∞,0] 上单调递减,在(0,+∞)上单调递增,又y=是单调递减的,因此f(x)的单调递增区间是(-∞,0],单调递减区间是(0,+∞).(2)由于f(x)的最大值是,且=,所以函数g(x)=|x|-a应该有最小值-2,从而a=2.[B级 综合练]11.(多选)关于函数f(x)=的性质,下列说法中正确的是(  )A.函数f(x)的定义域为RB.函数f(x)的值域为(0,+∞)C.方程f(x)=x有且只有一个实根D.函数f(x)的图象是中心对称图形解析:选ACD.函数f(x)=的定义域为R,所以A正确;因为y=4x在定义域内单调递增,所以函数f(x)=在定义域内单调递减,所以函数的值域为,所以方程f(x)=x只有一个实根,所以B不正确,C正确;因为f(x+1)+f(-x)=+=+=,所以f(x)关于点对称,所以D正确.12.已知函数f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),则下列结论中,一定成立的是________.①a<0,b<0,c<0;②a<0,b≥0,c>0;③2-a<2c;④2a+2c<2.解析: 作出函数f(x)=|2x-1|的图象,由图象可知a<0时,b的符号不确定,1>c>0,故①②错;因为f(a)=|2a-1|,f(c)=|2c-1|,所以|2a-1|>|2c-1|,即1-2a>2c-1,故2a+2c<2,④成立;又2a+2c>2,所以2a+c<1,所以a+c<0,所以-a>c,所以2-a>2c,③不成立.答案:④13.已知函数y=a+b的图象过原点,且无限接近直线y=2,但又不与该直线相交.(1)求该函数的解析式,并画出图象;(2)判断该函数的奇偶性和单调性.解:(1)因为函数y=a+b的图象过原点,所以0=a+b,即a+b=0,所以b=-a.函数y=a-a=a.又0<≤1,-1<-1≤0.且y=a+b无限接近直线y=2,但又不与该直线相交,所以a<0且0≤a<-a,所以-a=2,函数y=-2+2.用描点法画出函数的图象,如图.(2)显然函数的定义域为R.令y=f(x),则f(-x)=-2+2=-2+2=f(x),所以f(x)为偶函数.当x>0时,y=-2+2=-2+2为单调增函数.当x<0时,y=-2+2=-2+2为单调减函数.所以y=-2 +2在(-∞,0)上为减函数,在(0,+∞)上为增函数.14.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=++1.(1)当a=-1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围.解:(1)不是.理由如下:设y=f(x)=++1.当a=-1时,y=f(x)=-+1(x<0),令t=,x<0,则t>1,y=t2-t+1=+.所以y>1,即函数f(x)在(-∞,0)上的值域为(1,+∞).所以不存在常数M>0,使得|f(x)|≤M成立.所以函数f(x)在(-∞,0)上不是有界函数.(2)由题意知,|f(x)|≤3对x∈[0,+∞)恒成立.即-3≤f(x)≤3对x∈[0,+∞)恒成立.令t=,x≥0,则t∈(0,1].所以-≤a≤-t对t∈(0,1]恒成立,所以≤a≤,设h(t)=-,p(t)=-t,t∈(0,1].因为h(t)在(0,1]上单调递增,p(t)在(0,1]上单调递减, 所以h(t)在(0,1]上的最大值为h(1)=-5,p(t)在(0,1]上的最小值为p(1)=1.所以实数a的取值范围为[-5,1].[C级 创新练]15.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为设x∈R,用[x]表示不超过x的最大整数,则y=[x]称为高斯函数.例如:[-2.1]=-3,[3.1]=3,已知函数f(x)=,则函数y=[f(x)]的值域为(  )A.{0,1,2,3}B.{0,1,2}C.{1,2,3}D.{1,2}解析:选D.f(x)===1+,因为2x>0,所以1+2x>1,所以0<<1,则0<<2,所以1<1+<3,即10,满足方程有解;②若m<4,要使t2-mt-8=0在t≥2时有解,则需解得-2≤m<4.综上可得实数m的取值范围为[-2,+∞).
相关课件
更多相关资料
展开
2022年高考语文二轮复习:名篇名句默写 专项练习题精选汇编(Word版,含答案) 2022年中考道德与法治答题具体步骤与技巧复习指南(实用!) 2022年高考地理一轮复习:环境保护 专项练习题汇编(含答案解析) 2022新高考数学人教A版一轮总复习训练11.4抽样方法与总体分布的估计专题检测(带解析) 2022新高考数学人教A版一轮总复习训练11.1随机事件、古典概型与几何概型专题检测(带解析) 2022高考生物(山东版)一轮总复习专题26基因工程与生物技术的安全性和伦理问题专题检测(有解析)
免费下载这份资料?
立即下载